Commutative Algebra
 Fall 2013 Lecture 20

Karen Yeats
Scribe: Stefan Trandafir

December 9, 2013

1 Ext Continued

Proposition: Let P be an R-module. P is projective iff $\operatorname{Ext}_{R}^{n}(P, N)=0$
Proof:

$$
[\Rightarrow] \rightarrow 0 \rightarrow 0 \rightarrow P \rightarrow P \rightarrow P \rightarrow 0
$$

is a projective resolution of P . Apply $\operatorname{Hom}(-, \mathrm{N})$ to the truncated resolution to get
$0 \rightarrow \operatorname{Hom}(P, N) \rightarrow 0 \rightarrow 0 \rightarrow .$.
so for $n \geq 1, \operatorname{Ext}_{R}^{n}(P, N)=0$.
$[\Leftarrow]$ Let \mathcal{P} be a truncated projective resolution of P. Take
$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$
a short exact sequence of R-modules. Then there is a sequence of chain complexes:
$0 \rightarrow \operatorname{Hom}(\mathcal{P}, A) \rightarrow \operatorname{Hom}(\mathcal{P}, B) \rightarrow \operatorname{Hom}(\mathcal{P}, C) \rightarrow 0$
which is exact since each P_{i} in \mathcal{P} is projective. So we have a long exact sequence in homology, namely
$0 \rightarrow \operatorname{Ext}^{0}(P, A) \rightarrow \operatorname{Ext}^{0}(P, B) \rightarrow \operatorname{Ext}^{0}(P, C) \rightarrow \operatorname{Ext}^{1}(P, A) \rightarrow \ldots$ and
$E x t^{0}(P, A)=\operatorname{Hom}(P, A), \operatorname{Ext}^{0}(P, B)=\operatorname{Hom}(P, B), \operatorname{Ext}^{0}(P, C)=\operatorname{Hom}(P, C)$, and $E x t^{1}(P, A)=0$.
So $\operatorname{Hom}(P,-)$ is exact, thus P is projective.
This proposition along with the other 2 from last time characterize Ext.
Proposition: $\operatorname{Ext}^{0}(M, N) \cong \operatorname{Hom}(M, N)$
Proposition: Suppose $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is exact. Let N be another R-module.
Then $0 \rightarrow \operatorname{Ext}^{0}(C, N) \rightarrow \operatorname{Ext}^{0}(B, N) \rightarrow \operatorname{Ext}^{0}(A, N) \rightarrow \operatorname{Ext}^{1}(C, N) \rightarrow \ldots$ is exact.

Theorem: Let $\underline{E x t^{n}}: R-\bmod \rightarrow A b$ be a sequence of contravariant functors such that:

1. $\forall 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ short exact \exists
$\rightarrow \operatorname{Ext}^{n}(C) \rightarrow \underline{\operatorname{Ext}^{n}(B)} \rightarrow \underline{\operatorname{Ext}^{n}(A)} \xrightarrow{\Delta_{n}} \underline{\operatorname{Ext}^{n+1}(C)} \rightarrow \ldots$
exact with Δ_{n} natural.
2. $\exists \mathrm{R}$-module N such that $E x t^{0}$ and $\operatorname{Hom}(-, N)$ are naturally equivalent.
3. $E x t^{n}(P)=0 \forall P$ projective, $\forall n \geq 1$.

Then if E^{n} is another sequence of contravariant functors satisfying the same axioms with the same N in 2 . then $\underline{E x t^{n}}$ and E^{n} are naturally isomorphic.

Corollary: Ext as we defined it previously (note, we haven't proved it, because we skipped naturality in the propositions) is independent of the choice of projective resolution.

Proof of Theorem: Naturality will not be checked.
By induction on n.
Base Case: True by 2.
Given a module A, build an exact sequence
$0 \rightarrow L \rightarrow P \rightarrow A \rightarrow 0$ with P projective.
By 1 . the following rows are exact:
$\underset{\downarrow}{\underline{E x t}}{ }^{0}(P) \quad \rightarrow \quad \frac{E x t^{0}}{\downarrow}(L) \xrightarrow{\Delta_{0}} \underset{\downarrow}{\downarrow x t^{1}}(A) \rightarrow \underline{E x t^{1}}(P)$
$\operatorname{Hom}(P, N) \rightarrow \operatorname{Hom}(L, N) \xrightarrow{\delta_{0}} E(A) \rightarrow E^{1}(A)$
Where the down arrows indicate:
$\underline{\operatorname{Ext} t^{(}}(P) \xrightarrow{\cong} \operatorname{Hom}(P, N), E x t^{n} n(L) \xrightarrow{\simeq} \operatorname{Hom}(L, N)$. The isomorphisms are from 2 and the diagram commutes by naturality. By 3 . $E x t^{1}(P)=0, E^{1}(P)=$ 0 . Thus by the 5 -lemma we get an isomorphism σ from $\underline{E x t^{1}}(A)$ to $E(A)$.
Now, take $n \geq 1$.
$0=\underline{E x t^{n}}(P) \rightarrow \underline{E x t^{n}}(L) \xrightarrow{\Delta_{n}} \underline{E x t^{n+1}}(A) \rightarrow \underline{E x t^{n+1}}=0$
$0=E^{n}(P) \rightarrow \stackrel{\downarrow}{n}(L) \rightarrow E^{n+1}(A) \rightarrow E^{n+1}(P)=0$
Here, the downwards arrow indicates $\operatorname{Ext}^{n}(L) \cong E^{n}(L)$
By induction we get $E x t^{n}(L) \cong E^{n}(L)$.
By exactness of rows Δ_{n}, δ_{n} are also isomorphisms, giving σ an isomorphism.
This last trick comes up frequently. It is called dimension shifting.
Proposition: Suppose $0 \rightarrow A \rightarrow P \rightarrow C \rightarrow 0$ is a short exact sequence with

Proof: From the long exact sequence
$0=\operatorname{Ext}^{n}(P, N) \rightarrow \operatorname{Ext}^{n}(A, N) \rightarrow \operatorname{Ext}^{n+1}(C, N) \rightarrow \operatorname{Ext}^{n+1}(P, N)=0$
So $\operatorname{Ext}^{n}(A, N) \cong \operatorname{Ext}^{n+1}(C, N)$.
Here's an example of something you can do by dimension shifting.

Proposition: Let M, N be R-modules.
Let $\rightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \rightarrow 0$ be a projective resolution of M.
Let $K_{i}=\operatorname{ker}\left(d_{i}\right)$.
Then there is an exact sequence
$0 \rightarrow \operatorname{Hom}\left(K_{n-2}, N\right) \rightarrow \operatorname{Hom}\left(P_{n-1}, N\right) \rightarrow \operatorname{Hom}\left(K_{n-1}, N\right) \rightarrow \operatorname{Ext}^{n}(M, N) \rightarrow$ 0 .

Proof: $0 \rightarrow K_{n-1} \rightarrow P_{n-1} \rightarrow K_{n-2} \rightarrow 0$ is a short exact sequence, since the projective resolution is exact. So we get
$0 \rightarrow \operatorname{Hom}\left(K_{n-2}, N\right) \rightarrow \operatorname{Hom}\left(P_{n-1}, N\right) \rightarrow \operatorname{Hom}\left(K_{n-1}, N\right) \rightarrow \operatorname{Ext}{ }^{1}\left(K_{n-2}, N\right) \rightarrow$ $\operatorname{Ext}^{1}\left(P_{n-1}, N\right)=0$.
By dimension shifting,
$\operatorname{Ext}^{1}\left(K_{n-2}, N\right) \cong \operatorname{Ext}^{2}\left(K_{n-3}, N\right) \cong \operatorname{Ext}^{3}\left(K_{n-4}, N\right) \ldots \cong \operatorname{Ext}^{n-1}\left(K_{0}, N\right) \cong$ $\operatorname{Ext}^{n}(M, N)$.

2 Ext and Direct Sums

Note: Rotman writes Σ for \oplus.
Proposition: Let $\left\{M_{i}: i \in I\right\}$ be a family of modules and N be a module. $\overline{\text { Then } \forall n, E x t}{ }^{n}\left(\oplus M_{i}, N\right) \cong \prod E x t^{n}\left(M_{i}, N\right)$.

Proof: $\mathrm{n}=0: \operatorname{Ext}^{0}\left(\oplus M_{i}, N\right)=\operatorname{Hom}\left(\oplus M_{i}, N\right) \prod E x t^{0}\left(\oplus M_{i}, N\right)=\prod \operatorname{Hom}\left(M_{i}, N\right)$.
These are isomorphic as follows:
Take $\left(f_{i}\right)_{i \in I} \in \prod \operatorname{Hom}\left(M_{i}, N\right), f_{i} \in \operatorname{Hom}\left(M_{i}, N\right)$.
View $\left(f_{i}\right): \oplus M_{i} \rightarrow N$ via $\left(f_{i}\right)\left(\Sigma m_{j}\right)=\Sigma f_{j}\left(m_{j}\right) \in N$, where the sums are finite.
If $f \in \operatorname{Hom}\left(\oplus M_{i}, N\right)$,
then $\left(\left.f\right|_{M_{i}}\right)_{i \in I} \in \prod \operatorname{Hom}\left(M_{i}, N\right)$.
That is the base case.
For each $i \in I$, take
$0 \rightarrow L_{i} \rightarrow P_{i} \rightarrow M_{i} \rightarrow 0$ short, exact, with P_{i} projective.
Then
$0 \rightarrow L_{i} \rightarrow P_{i} \rightarrow M_{i} \rightarrow 0$ is also short, exact, and $\oplus P_{i}$ is projective.
Then
$\operatorname{Hom}\left(\oplus P_{i}, N\right) \rightarrow \operatorname{Hom}\left(\oplus L_{i}, N\right) \rightarrow E x t^{1}\left(\oplus M_{i}, N\right) \rightarrow 0$
$\stackrel{\downarrow}{\prod} \operatorname{Hom}\left(P_{i}, N\right) \rightarrow \stackrel{\downarrow}{\square} \operatorname{Hom}(L, N) \rightarrow \prod \operatorname{Ext}^{1}\left(M_{i}, N\right) \rightarrow 0$.
Here the downwards arrows indicate isomorphisms.
So by the 5-lemma: $\operatorname{Ext}^{1}\left(\oplus M_{i}, N\right) \prod E x t^{1}\left(M_{i}, N\right)$.
In general, by induction and dimension shifting, we get the result.
Proposition: Let $\left\{N_{i}: i \in I\right\}$ be a family of modules, and M another module. Then $E x t^{n}\left(M, \prod N_{i}\right) \cong \prod E x t^{n}\left(M, N_{i}\right)$.

Proof: Ommited. Essentially dual to previous, but needs injective modules in place of projective ones.

Corollary: Ext commutes with finite direct sums in either varible.
Proof: Π is equivalent to \oplus in the finite case.

3 What does Ext ${ }^{1}$ look like?

$\underline{\text { Proposition: }}$ Let G be an Abelian Group. Then $\operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z} / n \mathbb{Z}, G) \cong G / n G$
Proof: From $0 \rightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z} \rightarrow 0$.
We get a long exact sequence:
$\operatorname{Hom}(\mathbb{Z}, G) \rightarrow \operatorname{Hom}(\mathbb{Z}, G) \rightarrow \operatorname{Ext}^{1}(\mathbb{Z} / n \mathbb{Z}) \rightarrow \operatorname{Ext}^{1}(\mathbb{Z}, G)=0$
$\downarrow \downarrow$
$G \quad \rightarrow \quad G \quad \rightarrow \quad G / n G \quad \rightarrow \quad 0$
where the downwards arrows represent $\operatorname{Hom}(\mathbb{Z}, G) \xrightarrow{\cong}, G$.
By 5-lemma, we get $\operatorname{Ext}^{1}(\mathbb{Z} / n \mathbb{Z}, G) \cong G / n G$
Definition: Let C and A be R-modules. An extension of A by C is a short exact sequence
$0 \rightarrow A \xrightarrow{i} B \xrightarrow{p} C \rightarrow 0$.
The extension is split if the sequence is split.
Idea: B is the extension $A \cong i(A) \subseteq B$. So A is in B, but B is bigger by C.

Proposition: If $\operatorname{Ext}^{1}(C, A)=0$ then every extension of A by C splits.
Proof: Suppose we have an extension
$0 \rightarrow A \xrightarrow{i} B \xrightarrow{p} C \rightarrow 0$.
Then
$\operatorname{Hom}(C, B) \xrightarrow{p_{*}} \operatorname{Hom}(C, C) \rightarrow \operatorname{Ext}^{1}(C, A)=0$.
So p_{*} is surjective, so $\exists s \in \operatorname{Hom}(C, B)$ with $p s=p_{*} s=1_{c}$. But this is the splitting map.
The converse is also true, but we'll do that another time.
Corollary: An R-module P is projective iff $\forall B$ R-module, $E x t^{1}(P, B)=0$.
Proof:
$[\Rightarrow]$ We already know.
$[\Leftarrow]$ Given an exact sequence, $0 \rightarrow B \rightarrow X \rightarrow P \rightarrow 0$
it splits by the proposition and so P is projective.

